Title (Teoria eksperymentu fizycznego)	Code 1010341531010410719
Field Mathematics	Year / Semester 2 / 3
Specialty	Course
-	core
Hours	Number of credits
Lectures: 3 Classes: 2 Laboratory: 1 Projects / seminars: -	7
	Language
	polish

Lecturer:

dr hab. Eugeniusz Chimczak Department of Technical Physics, Institute of Physics ul. Nieszawska13A Poznań tel. +48 (61) 6653 200, 6653 177 chimczak@phys.put.poznan.pl

Faculty:

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Theory of physical experiment

Assumptions and objectives of the course:

The student should obtain knowledge of theoretical fundamentals of mechanics, ther-modynamics, electromagnetism, optics and quantum physics and its application.

Contents of the course (course description):

Mechanics: particle kinematics and dynamics. Work and energy. Rotational kinematics and dynamics. Relativistic mechanics. Oscillations. The gravitational field. Fluid me-chanics. Waves in elastic media. Temperature expansion. Gas processes. Distribution of molecular speeds. Heat: quantity of heat and specific heat, heat conduction. Thermody-namics. The electric field. Electric current. The magnetic field. Electromagnetic induction. Magnetic properties of matter. Electromagnetic oscillations and waves. Geometri-cal optics. Quantum physics. Temperature radiation; Plank?s formula. Photoelectric ef-fect. The Compton effect. The Bohr hydrogen atom.

Introductory courses and the required pre-knowledge:

Basic knowledge of mathematics and physics.

Courses form and teaching methods:

Lectures supported by transparencies and films; experiments.

Form and terms of complete the course - requirements and assessment methods:

Examination, tests.

Basic Bibliography:

-

Additional Bibliography:

tional bibliography